Abstract

We present a patient-specific model of low-density lipoprotein (LDL) transport from blood into arterial walls. To this end, the arterial endothelium is represented by a shear-stress dependent three-pore model taking into account blood plasma and LDL passage through the vesicular pathway, normal junctions and leaky junctions. We virtually remove atherosclerotic plaque from an in-vivo left coronary artery computed tomography (CT) dataset to obtain an approximation of the artery anatomy in its healthy state. By applying our model, we show that the location of the plaque in the diseased state corresponds to one of the two sites with predicted high LDL concentration in the healthy state. We further show that in the diseased state, the site with high LDL concentration has shifted distally, which is in agreement with the clinical observation that plaques generally grow in downstream direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.