Abstract

As a cancer chemotherapeutic drug, arsenic acts on numerous intracellular signal transduction pathways in cancer cells. However, its mechanism of actions is still not fully understood. Previous studies suggest that arsenic reacts with closely spaced cysteine (Cys) residues of proteins with high Cys content and accessible sulfhydryl (SH) groups. In this study, human breast cancer cell line MCF-7 was examined as a cellular model to explore arsenic-binding proteins and the mechanism of binding. An arsenic-biotin conjugate was synthesized by coupling the pentafluorophenol ester of biotin with p-aminophenylarsenoxide. Arsenic-binding proteins were eluted with streptavidin resin from arsenic-biotin treated MCF-7 cells, separated by polyacrylamide gel electrophoresis, and identified by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). Arsenic-binding properties of two of these proteins, β-tubulin and pyruvate kinase M2 (PKM2), were studied further in vitro and the biological consequences of this binding was evaluated. Binding assay with Western blotting confirmed binding of β-tubulin and PKM2 by arsenic in a concentration-dependent manner. Arsenic binding inhibited tubulin polymerization, but surprisingly had no effect on PKM2 activity. Molecular modeling showed that binding of Cys 12 alone or vicinal Cys residues (Cys 12 and Cys 213) of β-tubulin by arsenic blocked the active site for access of GTP, which is necessary for tubulin polymerization. On the contrary, all Cys residues of PKM2 were far away from the active site of the enzyme. In summary, this study confirmed β-tubulin and PKM2 as arsenic-binding proteins in MCF-7 cells. Functional consequence of such binding may depend on whether arsenic binding causes conformational changes or blocks active sites of target proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call