Abstract

Transforming growth factor (TGF)-beta-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. Previously, we have shown that TGF-beta inhibits the growth of rat intestinal epithelial (RIE)-1 cells. However, RIE-1 cells are relatively resistant to TGF-beta-induced apoptosis due to a low endogenous Smad3-to-Akt ratio. Overexpression of Smad3 sensitizes RIE-1 cells (RIE-1/Smad3) to TGF-beta-induced apoptosis by altering the Smad3-to-Akt ratio in favor of apoptosis. In this study, we utilized a genomic approach to identify potential downstream target genes that are regulated by TGF-beta/Smad3. Total RNA samples were analyzed using Affymetrix oligonucleotide microarrays. We found that TGF-beta regulated 518 probe sets corresponding to its target genes. Interestingly, among the known apoptotic genes included in the microarray analyses, only caspase-3 was induced, which was confirmed by real-time RT-PCR. Furthermore, TGF-beta activated caspase-3 through protein cleavage. Upstream of caspase-3, TGF-beta induced mitochondrial depolarization, cytochrome c release, and cleavage of caspase-9, which suggests that the intrinsic apoptotic pathway mediates TGF-beta-induced apoptosis in RIE-1/Smad3 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.