Abstract
Mycobacteriosis is a type of infection caused by rapidly growing mycobacteria (RGM), which can vary from localized illness, such as skin disease, to disseminated disease. Amikacin, cefoxitin, ciprofloxacin, clarithromycin, doxycycline, imipenem and sulfamethoxazole are antimicrobial drugs chosen to treat such illnesses; however, not all patients obtain the cure. The reason why the treatment does not work for those patients is related to the fact that some clinical strains present resistance to the existing antimicrobial drugs; thereby, the research of new therapeutic approaches is extremely relevant. The coordination of antimicrobial drugs to metals is a promising alternative in the development of effective compounds against resistant microorganisms. Sulfonamides complexed with Au, Cd, Ag, Cu, and Hg have shown excellent activity against a variety of microorganisms. Considering the importance of fighting against infections associated with RGM, the objective of this study is to evaluate the antimycobacterial activity of metal complexes of sulfonamides against RGM. Complexed sulfonamides activity were individually tested and in association with trimethoprim. The minimum inhibitory concentration (MIC) and time-kill curve of compounds against the standard strains of RGM [Mycobacterium abscessus (ATCC 19977), Mycobacterium fortuitum (ATCC 6841) and Mycobacterium massiliense (ATCC 48898)] was determined. The interaction of sulfonamides with trimethoprim was defined by inhibitory concentration index fractional for each association. The results showed that sulfonamides complexed whit metals have outstanding antimicrobial activity when compared to free sulfamethoxazole, bactericidal activity and synergistic effect when combined with trimethoprim.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.