Abstract
Photobacterium damselae ssp. piscicida ( Ph.d.p.), the causative agent of photobacteriosis, is among the most important pathogens affecting finfish aquaculture globally. With the emergence of recombinant technology, subunit vaccines have been actively pursued, but mostly for viral diseases. Bacterial subunit vaccines are more difficult to develop since the bacterial genome is more complex, with numerous candidate antigens, leading to a lengthy and laborious screening process. Immunoproteomics, using western blotting on protein analyzed with 2DE and LC-MS/MS to isolate immune-reactive proteins and acquire amino acid sequences, followed by recombinant technology to clone the candidate gene, identified eight candidate antigens from Ph.d.p., which have been cloned and expressed in Escherichia coli BL21(DE3). These proteins were purified and used as antigens in an efficacy trial. Three, rHSP60, rENOLASE, and rGAPDH proteins, elicited higher specific antibody titers and stronger protective immunity than the other five and an inactivated Ph.d.p. whole bacterial vaccine. These three antigens may be candidates for the development of a subunit vaccine against Ph.d.p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.