Abstract
Antibiotic-resistant Pseudomonas aeruginosa strains cause considerable morbidity and mortality globally. Identification of novel targets in this notorious pathogen is urgently warranted to facilitate discovery of new anti-pathogenic agents against it. This study attempted to identify small-molecule inhibitors of two important proteins LasR and nitric oxide reductase (NOR) in P. aeruginosa. 'Las' system can be said to be the 'master' regulator of quorum sensing in P. aeruginosa, whose receptor protein is LasR. Similarly, NOR is crucial to detoxification of reactive nitrogen species. In silico identification of potential LasR or NOR inhibitors was attempted through a virtual screening platform AtomNet® to obtain a final subset of <100 top scoring compounds. These compounds were evaluated for their in vivo anti-pathogenic activity by challenging the model host Caenorhabditis elegans with P. aeruginosa in the presence or absence of test compounds. Survival of the worm population in 24-well assay plates was monitored over a period of 5 days microscopically. Of the 96 predicted LasR inhibitors, 11 exhibited anti-Pseudomonas activity (23%-96% inhibition of bacterial virulence as per third-day end-point) at 25-50 µg/mL. Of the 85 predicted NOR inhibitors, 8 exhibited anti-Pseudomonas activity (40%-85% inhibition of bacterial virulence as per second-day end-point) at 25-50 µg/mL. Further investigation on molecular mode of action of compounds found active in this study is warranted. Virtual screening can be said to be a useful tool in narrowing down the list of compounds requiring actual wet-lab screening, saving considerable time and efforts for drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.