Abstract

The internal conversion from the optically bright S2 (1B2u, ππ*) state to the dark S1 (1B3u, nπ*) state in pyrazine is a standard benchmark for experimental and theoretical studies on ultrafast radiationless decay. Since 2008, a few theoretical groups have suggested significant contributions of other dark states S3 (1Au, nπ*) and S4 (1B2g, nπ*) to the decay of S2. We have previously reported the results of nuclear wave packet simulations [Kanno et al., Phys. Chem. Chem. Phys. 17, 2012 (2015)] and photoelectron spectrum calculations [Mignolet et al., Chem. Phys. 515, 704 (2018)] that support the conventional two-state picture. In this article, the two different approaches, i.e., wave packet simulation and photoelectron spectrum calculation, are combined: We computed the time-resolved vacuum ultraviolet photoelectron spectrum and photoelectron angular distribution for the ionization of the wave packet transferred from S2 to S1. The present results reproduce almost all the characteristic features of the corresponding experimental time-resolved spectrum [Horio et al., J. Chem. Phys. 145, 044306 (2016)], such as a rapid change from a three-band to two-band structure. This further supports the existence and character of the widely accepted pathway (S2 → S1) of ultrafast internal conversion in pyrazine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.