Abstract
Cyanobacteria are globally important primary producers and abundant in many iron-limited aquatic environments. The ways in which they take up iron are largely unknown, but reduction of Fe3+ is an important step in the process. Here we report a special iron permease in Synechocystis, cFTR1, that is required for Fe3+ uptake following Fe2+ re-oxidation. The expression of cFTR1 is induced by iron starvation, and a mutant lacking the gene is abnormally sensitive to iron starvation. The cFTR1 protein localizes to the plasma membrane and contains the iron-binding motif "REXXE". Point-directed mutagenesis of the REXXE motif results in a sensitivity to Fe-deficiency. Measurements of iron (55 Fe) uptake rate show that cFTR1 takes up Fe3+ rather than Fe2+ . The function of cFTR1 in Synechocystis could be genetically complemented by the iron permease, Ftr1p, of Saccharomyces cerevisiae, that is known to transport Fe3+ produced by the oxidation of Fe2+ via a multicopper oxidase. Unlike yeast Ftr1p, cyanobacterial cFTR1 probably obtains Fe3+ primarily from the oxidation of Fe2+ by oxygen. Growth assays show that the cFTR1 is required during oxygenic, photoautotrophic growth but not when oxygen production is inhibited during photoheterotrophic growth. In cyanobacteria, iron reduction/re-oxidation uptake pathway may represent their adaptation to oxygenated environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.