Abstract

Interferon regulatory factor-1 (IRF-1) is a member of the interferon regulatory factor family. It acts as a transcriptional activator and plays a critical role in antiviral defense, immune response, cell growth regulation, apoptosis and cell differentiation. Deletions, mutations or aberrant splicing of IRF-1 would result in its functional inactivation, and closely related to the tumorigenesis. In this work, we identified an IRF-1 splicing transcript (IRF-1-s) in all-trans retinoic acid (ATRA)-treated acute promyelocytic leukemia (APL) cell line NB4 cells. It lost the exon 8 and 9 of the full length IRF-1, expressed in numerous cell types and could be induced to expression by ATRA in NB4 cells. It turned out similar biological activity as full length IRF-1 to enhance the transcription of interferon stimulated response element (ISRE)-containing target genes. Identification of IRF-1-s in NB4 cells would be benefit for our further exploring the signaling pathway of ATRA and interferons, as well as the mechanisms of differentiation of APL cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call