Abstract

BackgroundAdjuvant chemotherapy (ACT) is widely accepted in patients with pancreatic ductal adenocarcinoma (PDAC) after surgery; however, effective models for predicting ACT response are scarce. Thus, the objective of this study was to develop a novel signature for predicting its response and overall survival (OS) in resected PDAC patients. MethodsA total of 50 PDAC patients with the transcriptome expression profiles, information about chemotherapy, and relevant clinical data were retrieved from the Cancer Genome Atlas (TCGA), and twenty-nine patients with tissue specimens and clinical data from our hospital were included as a validation. A novel gene signature was developed using bioinformatic differentially expressed genes (DEGs) analysis, Lasso-penalized Cox regression, and multivariate Cox regression studies. ResultsBetween chemotherapy-resistant and chemotherapy-sensitive cohorts, 569 DEGs were identified, with 490 upregulated and 79 downregulated genes mainly specialized in the regulation of peptide/protein/hormone secretion, calcium ion homeostasis, and T cell activation regulation in biological processes. After Lasso-penalized Cox and multivariate Cox regression analysis, BAT (BCHE, ADH1A, and TNS4) signature was established to predict ACT response and OS. Moreover, BAT signature was verified as an independent risk factor for ACT response (p = 0.042) and OS (median OS: 17.5 months vs. 34.8 months, p = 0.040) and significantly associated with immune infiltrations (p < 0.05). Then, this signature was further validated as the independent risk factor for recurrence-free survival (RFS) in PDAC patients receiving postoperative ACT (median RFS: 9.0 months vs. not reached, p = 0.014), and tumor-infiltrating CD4+ and CD8+ T cells were further validated to be significantly decreased in tissues with higher BAT signature scores (p = 0.015 and 0.021, respectively). ConclusionThe BAT signature is a novel formulated and independent risk factor for predicting ACT response and long-term survival in patients with resected PDAC. This signature could comprehensively reflect local immune-related response, tumor purity, potential biological behavior, and chemo drug susceptibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call