Abstract

Cyanobacterial toxins have adverse effects on mammals, birds and fish and are being increasingly recognised as a potent stress factor and health hazard factor in aquatic ecosystems. Microcystins, cyclic heptapeptides and a main group of the cyanotoxins are mainly retained within the producer cells during cyanobacterial bloom development. However, these toxins are released into the surrounding medium by senescence and lysis of the blooms. Any toxin present could then come into contact with a wide range of aquatic organisms including phytoplankton grazers, invertebrates, fish and aquatic plants. Recent studies showed the conversion of microcystin in animal liver to a more polar compound in correlation with a depletion of the glutathione pool of the cell. The present study shows the existence of a microcystin-LR glutathione conjugate formed enzymatically via soluble glutathione S-transferase in various aquatic organisms ranging from plants ( Ceratophyllum demersum), invertebrates ( Dreissena polymorpha, Daphnia magna) up to fish eggs and fish ( Danio rerio). The main derived conjugate was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry yielding a mass of m/ z 1302, which is equivalent to the mass assumed for a glutathione microcystin-LR conjugate. This conjugate appears to be the first step in the detoxication of a cyanobacterial toxin in aquatic organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.