Abstract

Enolase is a crucial enzyme involved in the glycolytic pathway and gluconeogenesis in parasites. It also has been reported to function as a plasminogen receptor and may be involved in tissue invasion. In this study, the biochemical properties of the enolase of Spirometra mansoni (Smenolase) were investigated. The Smenolase gene was found to cluster closely with the enolase genes of Clonorchis sinensis and Echinococcus granulosus, and some functional motifs were identified as conserved. Smenolase was confirmed to be a component of the secretory/excretory products (ESPs) and a circulating antigen of spargana. Recombinant Smenolase expressed in vitro was able to bind to human plasminogen. Smenolase was detected in the eggs, testicles, and vitellaria of adult worms and the tegument of spargana. The transcription level of Smenolase was highest at the gravid proglottid stage. When spargana were cultured with glucose of different concentration in vitro, it was observed that the expression levels of Smenolase in the low-glucose groups were consistent with that of Smenolase in vivo. These results indicate that Smenolase is a critical enzyme involved in supplying energy to support the development and reproduction of the parasite, and it may also play a role in sparganum invasion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call