Abstract
Arsenic (As) is a very toxic metalloid to a great number of organisms. It is one of the most important global environmental pollutants. To resist the arsenate invasion, some microorganisms have developed or acquired genes that permit the cell to neutralize the toxic effects of arsenic through the exclusion of arsenic from the cells. In this work, two arsenic resistance genes, arsA and arsC, were identified in three strains of Rhizobium isolated from nodules of legumes that grew in contaminated soils with effluents from the chemical and fertilizer industry containing heavy-metals, in the industrial area of Estarreja, Portugal. The arsC gene was identified in strains of Sinorhizobium loti [DQ398936], Rhizobium leguminosarum [DQ398938] and Mesorhizobium loti [DQ398939]. This is the first time that arsenic resistance genes, namely arsC, have been identified in Rhizobium leguminosarum strains. The search for the arsA gene revealed that not all the strains with the arsenate reductase gene had a positive result for ArsA, the ATPase for the arsenite-translocating system. Only in Mesorhizobium loti was the arsA gene amplified [DQ398940]. The presence of an arsenate reductase in these strains and the identification of the arsA gene in Mesorhizobium loti, confirm the presence of an ars operon and consequently arsenate resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.