Abstract

Galactomannans comprise a β-1,4-mannan backbone substituted with α-1,6-galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side-chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenum-graecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis-related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T-DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role.

Highlights

  • Mannans are hemicellulosic polysaccharides that are widespread in plants

  • The results provide evidence in support of our hypothesis that these proteins are involved in mannan biosynthesis

  • the characterization of a fenugreek MSR gene (TfMSR) is expressed in fenugreek seed endosperm

Read more

Summary

Introduction

Mannans are hemicellulosic polysaccharides that are widespread in plants. Based on the composition of the backbone and the presence/absence of side chains, mannan polysaccharides may be categorized into four types: mannans, glucomannans, galactomannans and galactoglucomannans. Both mannans and glucomannans contain a linear b-1,4-linked backbone, with the former composed of mannosyl residues and the latter composed of both mannosyl and glucosyl residues. The mannan or glucomannan backbone may be substituted with a-1,6-linked galactosyl resisdues to produce galactomannans or galactoglucomannans (Reid, 1985). Glucomannans are the major hemicellulose in the secondary walls of gymnosperms (Fengel and Wegener, 1989).

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.