Abstract

A transposable element that is active in intact plants has been identified in rice (Oryza sativa L.). The 607-bp element itself, termed nonautonomous DNA-based active rice transposon (nDart), has no coding capacity. It was found inserted in the gene encoding Mg-protoporphyrin IX methyltransferase in a chlorophyll-deficient albino mutant isolated from backcross progeny derived from a cross between wild-type japonica varieties. The nDart has 19-bp terminal inverted repeats (TIRs) and, when mobilized, generates an 8-bp target-site duplication (TSD). At least 13 nDart elements were identified in the genome sequence of the japonica cultivar Nipponbare. Database searches identified larger elements, termed DNA-based active rice transposon (Dart) that contained one ORF for a protein that contains a region with high similarity to the hAT dimerization motif. Dart shares several features with nDart, including identical TIRs, similar subterminal sequences and the generation of an 8-bp TSD. These shared features indicate that the nonautonomous element nDart is an internal deletion derivative of the autonomous element Dart. We conclude that these active transposon systems belong to the hAT superfamily of class II transposons. Because the transposons are active in intact rice plants, they should be useful tools for tagging genes in studies of functional genomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.