Abstract

Glucocorticoids (GCs) generally stimulate gene transcription via consensus glucocorticoid response elements (GREs) located in the promoter region. To identify the GRE in the rat tyrosine hydroxylase (TH) gene promoter, we transiently transfected PC12 cells with a 9-kilobase (kb) TH promoter-luciferase (Luc) construct. Dexamethasone (Dex) stimulated Luc activity, which was abolished by mifepristone (RU486). Serial deletion mutations revealed a Dex-responsive 7-base pair (bp) sequence, TGACTAA, located at -5734 to -5728. Deletion of just these seven nucleotides from the 9-kb promoter completely abolished the Dex response and partially reduced the response to phorbol ester but not to forskolin. The Dex response was fully retained in a construct in which most of the 9-kb promoter was deleted, except for 100 bp around the -5.7-kb region, clearly identifying this 7-bp sequence as solely responsible for GC responsiveness. Conversely, deletion of the proximal cAMP-response element (-45/-38) or activator protein-1 (AP-1) (-207/-201) sites in the 9-kb promoter did not affect Dex and phorbol ester responses. A radiolabeled 25-bp promoter fragment bearing the 7-bp TH-GRE/AP-1 showed specific binding to PC12 nuclear proteins. Using antibodies against the glucocorticoid receptors and AP-1 family of proteins and primers for the TH-GRE/AP-1 region, we detected a specific DNA amplicon in a chromatin immunoprecipitation assay. This 7-bp TH-GRE/AP-1 sequence (TGACTAA) does not bear similarity to any known GRE but closely resembles the consensus AP-1 binding site, TGACTCA. Our studies describe for the first time a novel GRE/AP-1 site present in the TH gene promoter that is critical for glucocorticoid regulation of the TH gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call