Abstract

Infection with avian influenza A H5N1 virus results in acute lung injury (ALI) and has a high mortality rate (52.79%) because there are limited therapies available for treatment. Drug repositioning is an economical approach to drug discovery. We developed a method for drug repositioning based on high-throughput RNA sequencing and identified several drugs as potential treatments for avian influenza A H5N1 virus. Using high-throughput RNA sequencing, we identified a total of 1,233 genes differentially expressed in A549 cells upon H5N1 virus infection. Among these candidate genes, 79 drug targets (corresponding to 59 approved drugs) overlapped with the DrugBank target database. Twenty-two of the 41 commercially available small-molecule drugs reduced H5N1-mediated cell death in cultured A549 cells, and fifteen drugs that protected A549 cells when administered both pre- and post-infection were tested in an H5N1-infection mouse model. The results showed significant alleviation of acute lung injury by amitriptyline HCl (an antidepressant drug), flavin adenine dinucleotide (FAD; an ophthalmic agent for vitamin B2 deficiency), azacitidine (an anti-neoplastic drug) and calcitriol (an active form of vitamin D). All four agents significantly reduced the infiltrating cell count and decreased the lung injury score in H5N1 virus-infected mice based on lung histopathology, significantly improved mouse lung edema by reducing the wet-to-dry weight ratio of lung tissue and significantly improved the survival of H5N1 virus-infected mice. This study not only identifies novel potential therapies for influenza H5N1 virus-induced lung injury but also provides a highly effective and economical screening method for repurposing drugs that may be generalizable for the prevention and therapy of other diseases.

Highlights

  • IntroductionSince 2000, the cost of developing a new drug has exceeded 1 billion USD, and this number continues to rise[1]

  • Drug discovery obeys Eroom’s law: innovation slows as cost increases

  • We identified 4 drugs, the antidepressant amitriptyline HCl, the ophthalmic flavin adenine dinucleotide, the anti-neoplastic azacitidine and the vitamin D-deficiency treatment calcitriol, as being highly effective for the treatment of H5N1 virus-induced acute lung injury (ALI) using a transcriptomic-based high-throughput repurposing drug screening

Read more

Summary

Introduction

Since 2000, the cost of developing a new drug has exceeded 1 billion USD, and this number continues to rise[1]. Drug repositioning, which identifies new indications for existing drugs, is an alternative approach that is both more efficient and economical because the safety profiles of the drug candidates are known. H5N1 is a highly pathogenic avian influenza A virus known to cause acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), with estimated mortality as high as 52.79%[3, 4]. Because current treatments for influenza virus infection and ARDS still present limitations, drug repurposing may be an effective method to identify novel therapeutic strategies to treat H5N1 virus-induced respiratory injury

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call