Abstract

Afidopyropen is highly effective against sucking insects, including the Myzus persicae, that modulates the transient receptor potential vanilloid (TRPV) channel. However, the action mechanisms of afidopyropen to the TRPV channel remain unknown. In this study, the genes encoding the Nanchung (MpNan) and Inactive (MpIav) subunits of the TRPV channel of M. persicae (MpTRPV) were cloned, and their spatiotemporal expression profiles were investigated. Then, MpTRPV was functionally expressed in Xenopus laevis oocytes, and the AA residues crucial for afidopyropen binding were identified using the two-electrode voltage clamp (TEVC) technique. The results showed that both MpNan and MpIav exhibited the highest expression in the antennae and were most abundant in the 4th instar nymphs and adults. Knockdown of these two genes by RNAi greatly increased the toxicity of afidopyropen to the aphids. Moreover, the AA residues involved in afidopyropen binding to MpNan were predicted and L412 was further identified as the key residue for binding by TEVC analysis. The results also showed that afdopyropen and pymetrozine share the same binding site. These findings lay a foundation not only for exploring the mechanisms of pest target resistance to afidopyropen and pymetrozine but also for developing new insecticides targeting the TRPV channels of pests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call