Abstract

We previously demonstrated that rRNA undergoes rapid and extensive degradation in Bombyx mori BM-N cells upon infection with AcMNPV, which is triggered by AcMNPV P143 (Ac-P143) protein. Here, we showed that six amino acid residues of Ac-P143 protein, distributing between positions 514 and 599, are involved in rRNA degradation in BM-N cells. The six residues are highly conserved among P143 proteins from AcMNPV, HycuMNPV, SeMNPV and SpltMNPV, which trigger rRNA degradation in BM-N cells upon infection, but are only partially conserved in Bm-P143 protein, which does not induce rRNA degradation in BM-N cells. We also demonstrated that substitution of only two selected residues (N565S/L578F) of Bm-P143 protein with the corresponding Ac-P143 protein residues generates a mutant Bm-P143 protein that is capable of triggering rRNA degradation in BM-N cells. These results indicate that BmNPV evolved a unique P143 protein to evade the antiviral response and allow replication in B. mori cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call