Abstract

Alternative oxidases (AOX) are defined in plants, fungi and algae. The main function of AOX proteins has been described for electron flow through electron transport chain and regulation of mitochondrial retrograde signaling pathway. The roles of AOX proteins have been characterized in reproduction and resistance against oxidative stress, cold stress, starvation, and biotic attacks. Caulerpa cylindracea is an invasive marine green alga. Although the natural habitats of the species are Australia coasts, the impact of the invasion has been monitored through the Mediterranean Sea and the Aegean Sea. C. cylindracea species have advantages against others by showing higher resistance to stress conditions such as cold, starvation, pathogen attacks and by their capability of sexual and vegetative reproduction. Comparing the advantages of C. cylindracea over the niche and defined functional roles of mitochondrial AOX proteins, it is evident that AOX proteins are likely involved in developing those advantageous skills in C. cylindracea. However, there is limited data about biochemical and molecular mechanisms that take part in stress resistance and invasion characteristics. We aimed to identify mitochondrial alternative oxidase encoding genes in C. cylindracea while annotating whole transcriptome data for the species. Samples were collected from Seferihisar/İzmir. Transcriptome analysis from pooled RNA samples revealed 47,400 assembled contigs represented by 33,340 unigenes. Using standalone Blast analysis, we were able to identify two alternative oxidase encoding genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.