Abstract

Carcinoembryonic antigen-related cell adhesion molecule (CEACAM1), the primordial member of the carcinoembryonic antigen (CEA) family, functions as a MHC-independent natural killer (NK) cell inhibitory receptor, regulates T and B cell proliferation, and induces dendritic cell (DC) maturation. Despite these fundamental functions, CEACAM1 and most of the CEA family members differ significantly in primates and rodents. A number of diverse murine and human pathogens use CEACAM1 as a cellular receptor, indicating that the observed species-specific differences are the result of divergent molecular pathogen/host coevolution. To gain deeper insight into its evolution and function, we cloned CEACAM1 cDNA from cattle as a representative of a third mammalian order. Bovine CEACAM1 differs considerably from rodent and primate CEACAM1 due to deletion of the B domain exon which was most likely caused by insertion of LINE/SINE sequences and reveals alternative splicing within the transmembrane exon. However, the characteristic long and short isoforms exist which contain or lack the typical immunoreceptor tyrosine-based inhibitory motifs (ITIM) in their cytoplasmic tails, respectively. Bovine peripheral blood lymphocytes (PBL) express only ITIM-containing CEACAM1 isoforms, and upregulate their expression upon stimulation, suggesting an inhibitory function in these cells. As found in rodents, two clearly distinct CEACAM1 alleles exist in cattle. In the a allele, a unique deletion of three amino acids is found in the N domain, which is important for pathogen binding in mice and humans. This is consistent with the notion that CEACAM1 serves or has served as a pathogen receptor in cattle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call