Abstract

A methodology is presented which allows to determine the coefficients of transmission and reflection of plane acoustic waves at flow discontinuities in piping systems by combining large eddy simulation (LES) of turbulent compressible flows with system identification. The method works as follows. At first, an LES with external, broadband excitation of acoustic waves is carried out. Time series of acoustic data are extracted from the computed flow field and analyzed with system identification techniques in order to determine the acoustic scattering coefficients for a range of frequencies. The combination of broadband excitation with highly parallelized LES makes the overall approach quite efficient, despite the difficulties associated with simulation of low-Mach number compressible flows. The method is very general, here it is applied to study the scattering behavior of acoustic waves at a sudden change in cross-section in a duct system. The complex aero-acoustic interactions between acoustic waves and free shear layers are captured in detail by high resolution compressible LES, such that the scattering coefficients can be determined accurately from first principles. In order to demonstrate the reliability and accuracy of the method, the results for the scattering behavior and the acoustic impedance are presented and physically interpreted in combination with several analytical models and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call