Abstract
Acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol using 2-monoacylglycerol and fatty acyl coenzyme A. This enzymatic reaction is believed to be an essential and rate-limiting step for the absorption of fat in the small intestine. Although the first MGAT-encoding cDNA, designated MGAT1, has been recently isolated, it is not expressed in the small intestine and hence cannot account for the high intestinal MGAT enzyme activity that is important for the physiology of fat absorption. In the current study, we report the identification of a novel MGAT, designated MGAT3, and present evidence that it fulfills the criteria to be the elusive intestinal MGAT. MGAT3 encodes a approximately 36-kDa transmembrane protein that is highly homologous to MGAT1 and -2. In humans, expression of MGAT3 is restricted to gastrointestinal tract with the highest level found in the ileum. At the cellular level, recombinant MGAT3 is localized to the endoplasmic reticulum. Recombinant MGAT3 enzyme activity produced in insect Sf9 cells selectively acylates 2-monoacylglycerol with higher efficiency than other stereoisomers. The molecular identification of MGAT3 will facilitate the evaluation of using intestinal MGAT as a potential point of intervention for antiobesity therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.