Abstract
Metals with a hexagonal close packed structure can deform by several different slip modes with different Critical Resolved Shear Stresses, which provides a great deal of complexity when considering mechanical performance of Mg, Ti and Zr alloys. Hence, an accurate but also statistically meaningful analysis of active slip systems and their contribution to plasticity is of great importance for the understanding of deformation mechanism. In the present study, a correlative scanning electron microscopy-based method of slip trace analysis has been utilised to provide statistical, accurate information of slip behaviour in a weakly textured Ti–6Al–4V alloy with a plastic strain of ∼2%. This is achieved through grain orientation mapping by Electron Backscatter Diffraction and strain mapping by High Resolution Digital Image Correlation. The initial identification of slip mode was performed by comparing the slip trace captured in the high-resolution effective shear strain map with all theoretical slip planes with an angle acceptance criterion of ±5°. Ambiguity in slip mode identification was further resolved using the Relative Displacement Ratio method, which enables the determination of the Burgers vector directly from the displacement data. The correctness of the identified slip modes has been confirmed by detailed dislocation analysis using Bright Field Scanning Transmission Electron Microscopy on thin foils extracted from specific grains employing Focused Ion Beam. This detailed investigation demonstrates the robustness of the slip trace analysis based on grain orientation and high-resolution strain mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.