Abstract

Obtaining insight into the type of surface sites involved in a reaction is essential to understand catalytic mechanisms at the atomic level and a key for understanding selectivity in surface-catalyzed reactions. Here we use ultrafast broad-band vibrational spectroscopy to follow in real-time diffusion of CO molecules over a palladium nanoparticle surface toward an active site. Site-to-site hopping is triggered by laser excitation of electrons and followed in real-time from subpicosecond changes in the vibrational spectra. CO photoexcitation occurs in 400 fs and hopping from NP facets to edges follows within ∼1 ps. Kinetic modeling allows to quantify the contribution of different facet sites to the catalytic reaction. These results provide useful insights for understanding the mechanism of chemical reactions catalyzed by metal NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.