Abstract

ABSTRACTThe deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each of the six categories was colocalized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three of the six potential interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial.IMPORTANCE Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin (GlActin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin’s importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia’s host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.

Highlights

  • The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis

  • We used buffers developed for canonical actin; whether these buffers are optimal for Giardia lamblia actin (GlActin) remains untested

  • We performed LC-MS/MS to identify putative GlActin interactors and found them to localize to multiple regions within the cell, including the nuclei, plasma membrane, endomembrane system, marginal plate, flagella, and ventral disc

Read more

Summary

Introduction

The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Actin is a highly conserved filament-forming protein with essential roles in all eukaryotes, that include signaling, motility, membrane trafficking, cell polarity, and cytokinesis [1]. Both actin monomers (globular or G-actin) and polymerized actin (filamentous or F-actin) have essential functions in the cell; the balance between the two Volume 9 Issue 1 e00558-21. Giardia actin (GlActin) retains conserved roles in many cellular processes, including membrane trafficking, cell polarity, and cytokinesis [6, 7]. These conserved roles indicate the presence of noncanonical interactors in the proteome [8]. Giardia has been designated the cause of a neglected disease by the World Health Organization, and giardiasis results in millions of cases of diarrheal disease worldwide each year [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call