Abstract

BackgroundThe saliva of tsetse flies contains a cocktail of bioactive molecules inducing specific antibody responses in hosts exposed to bites. We have previously shown that an indirect-ELISA test using whole salivary extracts from Glossina morsitans submorsitans was able to discriminate between (i) cattle from tsetse infested and tsetse free areas and (ii) animals experimentally exposed to low or high numbers of tsetse flies. In the present study, our aim was to identify specific salivary synthetic peptides that could be used to develop simple immunoassays to measure cattle exposure to tsetse flies.MethodsIn a first step, 2D-electrophoresis immunoblotting, using sera from animals exposed to a variety of bloodsucking arthropods, was performed to identify specific salivary proteins recognised in cattle exposed to tsetse bites. Linear epitope prediction software and Blast analysis were then used to design synthetic peptides within the identified salivary proteins. Finally, candidate peptides were tested by indirect-ELISA on serum samples from tsetse infested and tsetse free areas, and from exposure experiments.ResultsThe combined immunoblotting and bioinformatics analyses led to the identification of five peptides carrying putative linear epitopes within two salivary proteins: the tsetse salivary gland protein 1 (Tsal1) and the Salivary Secreted Adenosine (SSA). Of these, two were synthesised and tested further based on the absence of sequence homology with other arthropods or pathogen species. IgG responses to the Tsal152–75 synthetic peptide were shown to be specific of tsetse exposure in both naturally and experimentally exposed hosts. Nevertheless, anti-Tsal152–75 IgG responses were absent in animals exposed to high tsetse biting rates.ConclusionsThese results suggest that Tsal152–75 specific antibodies represent a biomarker of low cattle exposure to tsetse fly. These results are discussed in the light of the other available tsetse saliva based-immunoassays and in the perspective of developing a simple serological tool for tsetse eradication campaigns to assess the tsetse free status or to detect tsetse reemergence in previously cleared areas.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1414-8) contains supplementary material, which is available to authorized users.

Highlights

  • The saliva of tsetse flies contains a cocktail of bioactive molecules inducing specific antibody responses in hosts exposed to bites

  • Identification of specific immunogenic salivary proteins of Glossina exposure The sialome of G. m. submorsitans was investigated by 2D-gel electrophoresis separation of the whole salivary extracts (WSE) followed by colloidal blue staining (Fig. 1) and subsequent MALDI-TOF/MS identification

  • All spots were identified as related to G. m. morsitans salivary proteins [41]: the Tsetse salivary gland protein 1 (Tsal1); the Tsetse salivary gland protein 2 (Tsal2) and its two isoforms (Tsal2A and Tsal2B); the Tsetse Salivary Growth Factor 1 (TSGF-1); the Salivary Secreted Adenosine (SSA); the Adenosine Deaminase-related Growth Factor C (ADGF-C); the 5′Nucleotidase family salivary protein (5′-nuc) and the Tsetse Antigen 5 (TAg5)

Read more

Summary

Introduction

The saliva of tsetse flies contains a cocktail of bioactive molecules inducing specific antibody responses in hosts exposed to bites. We have previously shown that an indirect-ELISA test using whole salivary extracts from Glossina morsitans submorsitans was able to discriminate between (i) cattle from tsetse infested and tsetse free areas and (ii) animals experimentally exposed to low or high numbers of tsetse flies. A parasitic vector-borne disease that constitutes a major constraint to development in subSaharan Africa, exists under two forms: Human African Trypanosomosis (HAT) known as sleeping sickness and African Animal Trypanosomosis (AAT) or Nagana. The Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) initiative promoting integrated control of AAT and large tsetse eradication campaigns are underway in Uganda, Kenya and Ethiopia in East Africa and in Ghana, Burkina Faso and Mali in West Africa, with the aim of improving breeding and agriculture by creating new tsetse free areas [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call