Abstract

The repertoire of Kv1 potassium channels expressed in presynaptic terminals of mammalian central neurons is shaped by intrinsic trafficking signals that determine surface-expression efficiencies of homomeric and heteromeric Kv1 channel complexes. Here, we show that a determinant controlling surface expression of Kv1 channels is localized to the highly conserved pore region. Point-mutation analysis revealed two residues as critical for channel trafficking, one in the extracellular "turret" domain and one in the region distal to the selectivity filter. Interestingly, these same residues also form the binding sites for polypeptide neurotoxins. Our findings demonstrate a previously uncharacterized function for the channel-pore domain as a regulator of channel trafficking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.