Abstract

Exploiting metabolic vulnerabilities of cancer cells with nontoxic, plant derived compounds constitutes a novel strategy for both chemoprevention and treatment. A high-throughput screening approach was used to evaluate a library of natural products to determine the most synergistic combination in precursor-B cell acute lymphoblast leukemia. Dimethylaminoparthenolide and shikonin effectively inhibited proliferation resulting in cell death in primary and immortalized leukemia cells, while having negligible effects on normal cells. Dimethylaminoparthenolide and shikonin have been shown separately to inhibit cell survival and proliferative signaling and activate tumor suppressors and proapoptotic pathways. Untargeted metabolomics and metabolic flux analysis with stable isotopically labeled glucose and glutamine exhibited a global shift in metabolism following treatment. Pathway analysis indicated significant differences in amino acid, antioxidant, tricarboxylic acid cycle, and nucleotide metabolism. Together, dimethylaminoparthenolide and shikonin reduced the shunting of glycolytic intermediates into the pentose phosphate pathway for biosynthetic purposes. Similarly, the incorporation of glutamine and glutamine-derived metabolites into purine and pyrimidine synthesis was inhibited by the combination of dimethylaminoparthenolide and shikonin, effectively impeding biosynthetic pathways critical for leukemia cell survival. This approach demonstrates that a synergistic pair of compounds with malignant cell specificity can effectively target metabolic pathways crucial to leukemia cell proliferation and induce apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.