Abstract

p53 is a critical tumor-suppressor protein that guards the human genome against mutations by inducing cell-cycle arrest or apoptosis. Cancer cells subvert p53 by deletion, mutation, or overexpression of the negative regulators HDM2 and HDMX. For tumors that retain wild-type p53, its reactivation by pharmacologic targeting of HDM2 and/or HDMX represents a promising strategy, with a series of selective small-molecule HDM2 inhibitors and a dual HDM2/HDMX stapled-peptide inhibitor being evaluated in clinical trials. Because selective HDM2 targeting can cause hematologic toxicity, selective HDMX inhibitors could provide an alternative p53-reactivation strategy, but clinical candidates remain elusive. Here, we applied a mutation-scanning approach to uncover p53-based stapled peptides that are selective for HDMX. Crystal structures of stapled-peptide/HDMX complexes revealed a molecular mechanism for the observed specificity, which was validated by HDMX mutagenesis. Thus, we provide a blueprint for the development of HDMX-selective inhibitors to dissect and target the p53/HDMX interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call