Abstract

Recent work has shown that the resonate-and-fire neuronal model is both computationally efficient and suitable for large network simulations. In this paper, we examine the estimation problem of a resonate-and-fire neuronal model with stochastic firing threshold. The model parameters are divided into two sets. The first set is associated with the subthreshold behaviour and can be estimated by a least squares algorithm, while the second set includes parameters associated with the firing threshold and its identification is formulated as a maximum likelihood estimation problem. The latter is in turn solved by a simulated annealing approach that avoids local optima. The proposed identification approach is evaluated using both simulated and in-vitro data, which shows a good match between prediction by identified model and the actual data, concluding the efficiency and accuracy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.