Abstract

Interaction between two periodontal pathogens, Porphyromonas gingivalis and Treponema denticola, contributes to plaque biofilm formation. Porphyromonas gingivalis forms aggregates with T. denticola through its adhesion/hemagglutinin domain (Hgp44). In this study, we investigated the specific domain of P. gingivalis Hgp44 responsible for adhesion to T. denticola using expression vectors harboring P. gingivalis Hgp44 DNA sequences encoding amino acid residues 1-419. Six plasmids harboring fragments in this region were generated by PCR amplification and self-ligation, and recombinant proteins r-Hgp44 (residues 1-419), r-Hgp441 (residues 1-124), r-Hgp442 (1-199), r-Hgp443 (1-316), r-Hgp444 (199-419), r-Hgp445 (124-198) and r-Hgp446 (199-316) were produced, as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. r-Hgp44, r-Hgp443 and r-Hgp446 showed greater adhesion to T. denticola sonicates than the control, as determined by enzyme-linked immunosorbent assay. r-Hgp446 reduced the coaggregation of P. gingivalis and T. denticola. Scanning electron and confocal laser scanning microscopy analyses revealed that r-Hgp446 reduced dual-species biofilm formation. Our results indicate that residues 199-316 of P. gingivalis Hgp44 are mainly responsible for adhesion to T. denticola; inhibiting this domain could potentially disrupt periodontopathic biofilm formation and maturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call