Abstract
Pyroptosis is a key inflammatory form of cell death participating in the progression of many inflammatory diseases, such as experimental autoimmune encephalomyelitis (EAE) and sepsis. Identification of small molecules to inhibit pyroptosis is emerging as an attractive strategy. In this study, we performed a screening based on in silico docking of compounds on the reported Gasdermin D (GSDMD) three-dimensional structure and found C202-2729 demonstrated strong anti-inflammatory effects in both endotoxin shock and EAE mouse models. Oral administration of C202-2729 was capable of attenuating EAE disease severity significantly and has the comparable effects to teriflunomide, the first-line clinical drug of multiple sclerosis. We found C202-2729 remarkably suppressed macrophage and T cell-associated immune inflammation. Mechanistically, C202-2729 neither impact GSDMD cleavage nor the upstream inflammasome activation in mouse immortalized bone marrow-derived macrophages. However, C202-2729 exposure significantly repressed the IL-1β secretion and cell pyroptosis. We found C202-2729 directly bonds to the N terminus of GSDMD and blocks the migration of the N-terminal GSDMD fragment to cell membrane, restraining the pore-forming and mature IL-1β release. Collectively, our findings provide a new molecule with the potential for translational application in GSDMD-associated inflammatory diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.