Abstract

The cellular thermal shift assay (CETSA) has recently been devised as a label-free method for target validation of small compounds and monitoring the thermal stabilization or destabilization of proteins due to binding with the compound. Herein, we developed a modified method by combining the CETSA and proteomics analysis based on 2D gel electrophoresis, namely 2DE-CETSA, to identify the thermal stability-shifted proteins by binding with a new compound. We applied the 2DE-CETSA for analysis of a target-unknown compound, NPD10084, which exerts anti-proliferative activity against colorectal cancer cells invitro and invivo, and identified pyruvate kinase muscle isoform 2 (PKM2) as a candidate target protein. Interestingly, NPD10084 interrupted protein-protein interactions between PKM2 and β-catenin or STAT3, with subsequent suppression of downstream signaling. We thus demonstrate that our 2DE-CETSA method is applicable for identification of target compounds discovered by phenotypic screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call