Abstract

The human endogenous retrovirus family HTDV/HERV-K codes for the viral particles observed in teratocarcinoma cell lines. Two types of proviral genomes exist; these differ in the presence or absence of a stretch of 292 nucleotides. This sequence comprises the amino-terminal part of the env gene, the putative signal peptide, which overlaps in part with the carboxy terminus of the pol gene. Type 2 genomes containing this sequence presumably more closely reflect the structure of the infectious, replication-competent retrovirus ancestors of the HERV-K family than do type 1 genomes that lack the sequence. In human teratocarcinoma cell lines, both variants are expressed. Type 1 genomes, in which pol and env genes are fused, are deficient in splicing. Type 2 transcripts are spliced to subgenomic env mRNA and smaller messages. A doubly spliced transcript encodes a short open reading frame, preliminarily designated cORF (R. Löwer, K. Boller, B. Hasenmeier, C. Korbmacher, N. Mueller-Lantzsch, J. Löwer, and R. Kurth, Proc. Natl. Acad. Sci. USA 90:4480-4484). The genomic organization of cORF resembles that of nonprimate lentivirus rev genes: the first exon comprises nearly the entire signal peptide of env, and the second exon is derived from a different reading frame in the 3' part of the genome. A nucleolar localization signal, which is also a putative RNA binding domain, as well as a sequence with similarities to the Rev effector domain consensus sequence is present in the first exon. Secondary structure analysis reveals similarities to basic helix-loop-helix proteins. cORF is a small protein with an apparent molecular mass of 14 kDa which accumulates in the nucleolus as has been described for Rev proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.