Abstract

The multiprotein Mediator coactivator complex is universally required for transcription of metazoan genes. It has been proposed to function by interfacing between transcriptional activators and the RNA polymerase II machinery. However, in vitro transcription systems reconstituted from homogeneous preparations of RNA polymerase II, the general transcription initiation factors, and the cofactor PC4 display relatively robust activator (HNF-4)-dependent activity, which, nonetheless, can be further stimulated by Mediator. By contrast, an unfractionated nuclear extract-based system in which Mediator has been immunodepleted displays a near-absolute dependence on ectopic Mediator. Here, we identified and purified an activity, MSA-2, that confers extract-like Mediator responsiveness to our reconstituted system. Mass spectrometric analyses identified its two constituent polypeptides as hSpt5 and hSpt4, which also comprise the elongation factor DSIF. Mechanistically, MSA-2/DSIF acts by restricting overall transcription in the pure system, thereby imposing a strong Mediator dependence. Our data thus point to potential mechanisms for Mediator function beyond its presently believed role in promoting the initial formation of the RNA polymerase II-containing preinitiation complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.