Abstract

Chemical inhibition of the mitochondrial electron transport chain (mtETC) by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA) causes increased expression of nucleus-encoded alternative oxidase (AOX) genes in plants. In order to better understand the mechanisms of this mitochondrial retrograde regulation (MRR) of gene expression, constructs containing deleted and mutated versions of a promoter region of the Arabidopsis thaliana AOX1a gene (AtAOX1a) controlling expression of the coding region of the enhanced firefly luciferase gene were employed to identify regions of the AtAOX1a promoter important for induction in response to mtETC or TCA cycle inhibition. Transient transformation coupled with in vitro and in vivo assays as well as plants containing transgenes with truncated promoter regions were used to identify a 93 base pair portion of the promoter, termed the MRR region, that was necessary for induction. Further mutational analyses showed that most of the 93 bp MRR region is important for both AA and MFA induction. Sub-regions within the MRR region that are especially important for strong induction by both AA or MFA were identified. Specific mutations in a W-box and Dof motifs in the MRR region indicate that these specific motifs are not important for induction. Recent evidence suggests that MRR of AOX genes following inhibition of the mtETC is via a separate signaling pathway from MRR resulting from metabolic shifts, such as those that result from MFA treatment. Our data suggest that these signaling pathways share regulatory regions in the AtAOX1a promoter. Arabidopsis proteins interacted specifically with a probe containing the MRR region, as shown by electrophoretic mobility shift assays and Southwestern blotting. These interactions were eliminated under reducing conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call