Abstract

The near-unity triplet quantum yield of photoexcited carbonyl functionalized pyrenes is theoretically investigated. The estimated energetics of singlet-triplet manifolds and relevant spin-orbit coupling parameters strongly suggest triplet state formation via the S1→ T4/T5 pathway. Quantum wavepacket dynamics of triplet manifolds within the linear vibronic coupling approach reveal that the receiver triplet state would undergo rapid internal conversion decay to the lower triplet state(s), facilitating efficient triplet generation by minimizing the reverse intersystem crossing possibilities. On the basis of these results, a unified mechanism is proposed to describe the ultrafast intersystem crossing process in these molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.