Abstract

We have identified and cloned the cDNA for a 912-aa protein, rab11BP, that interacts with the GTP-containing active form of rab11, a GTP-binding protein that plays a critical role in receptor recycling. Although rab11BP is primarily cytosolic, a significant fraction colocalizes with rab11 in endosomal membranes of both the sorting and recycling subcompartments. In vitro binding of rab11 to native rab11BP requires partial denaturation of the latter to expose an internal binding site located between residues 334 and 504 that is apparently masked by the C-terminal portion of the protein, which includes six repeats known as WD40 domains. Within the cell, rab11BP must undergo a conformational change in which the rab11-binding site becomes exposed, because when coexpressed with rab11 in transfected cells the two proteins formed abundant complexes in association with membranes. Furthermore, although overexpression of rab11BP did not affect transferrin recycling, overexpression of a truncated form of the protein, rab11BP(1-504), that includes the rab11-binding site but lacks the WD40 domains inhibited recycling as strongly as does a dominant negative rab11 mutant protein that does not bind GTP. Strikingly, the inhibition caused by the truncated rab11BP was prevented completely when the cells also expressed a C-terminally deleted, nonprenylatable form of rab11 that, by itself, has no effect on recycling. We propose that rab11BP is an effector for rab11, whose association with this GTP-binding protein is dependent on the action of another membrane-associated factor that promotes the unmasking of the rab11-binding site in rab11BP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.