Abstract

BackgroundGuanylyl cyclase-B (GC-B; NPR-B), the receptor for C-type natriuretic peptide (CNP) is rapidly and effectively desensitized by a factor(s) in serum. Given the potential importance of this receptor in remodeling after tissue injury, identification of the serum factor(s) is of significant medical importance.ResultsPartial purification of desensitization activity in serum by DEAE-Sepharose and reverse phase C18 chromatography, followed by mass spectroscopy, identified peptide sequences identical to those of apolipoprotein A2 (Apo A2), a known component of high density lipoprotein (HDL). Apo A2, however, could be eliminated as the active desensitization factor. Never the less, substantial desensitization activity was associated with purified preparations of bovine or human HDL. Since HDL is a well-known transporter of various lipids and phospholipids, we extracted either HDL or partially purified serum preparations with butanol and all activity extracted into the solvent. Of various lipophilic signaling molecules known to be associated with HDL, a prominent component is sphingosine-1-phosphate (S1P). We therefore tested authentic S1P as well as other known components of HDL (sphingosylphosphorylcholine; platelet activating factor) for activity; only S1P caused desensitization of GC-B. S1P was relatively potent, causing one-half maximal desensitization of GC-B at concentrations of 5–10 nM. These effects were seen within a few minutes after addition. Lysophosphatidic acid, another component of serum capable of desensitizing GC-B, was only effective at Micromolar concentrations. The pathway by which serum or S1P desensitizes GC-B seems unique in that pertussis toxin failed to inhibit GC-B desensitization, and yet blocked serum or S1P activation of extracellular signal-regulated kinase (ERK) or Akt/protein kinase B (Akt/PKB).ConclusionSince the concentrations of S1P that desensitize GC-B are well within serum physiological ranges, this mitogenic signaling molecule likely functions as a strong adversary of the CNP/GC-B signaling pathway in the regulation of cell proliferation and other growth factor-induced phenotypes. The mechanism by which S1P desensitizes GC-B appears different than the known S1P signaling pathways.

Highlights

  • Guanylyl cyclase-B (GC-B; NPR-B), the receptor for C-type natriuretic peptide (CNP) is rapidly and effectively desensitized by a factor(s) in serum

  • As we compared the relative potencies of various serum growth factors to desensitize GC-B, we realized that serum acted at dilutions where the above factors could not represent the most active desensitization factor

  • Human and bovine high density lipoprotein (HDL) preparations were added to GC-B/3T3 cells for 30 min and desensitization of GC-B was determined as described under Methods

Read more

Summary

Introduction

Guanylyl cyclase-B (GC-B; NPR-B), the receptor for C-type natriuretic peptide (CNP) is rapidly and effectively desensitized by a factor(s) in serum. Atrial natriuretic peptide (ANP1), C-type natriuretic peptide (CNP), and cell-permeant guanosine-3',5'-monophosphate (cGMP) analogs antagonize growth factorstimulated proliferation and chemotaxis in cultured fibroblasts and vascular smooth muscle cells, and CNP slows coronary artery restenosis in vivo [1,2,3]. Serum and certain peptide and phospholipid growth factors suppress CNP-elevations of cGMP in primary dermal fibroblasts, BALB-c/3T3 fibroblasts, or NIH/ 3T3 fibroblasts that over-express the receptor for CNP, guanylyl cyclase B (GC-B) [1,4]. A number of growth factors and other agents have been shown to cause desensitization of guanylyl cyclase A (GC-A) or GC-B, possibly through the induction of receptor dephosphorylation [1,7,8]. We identified a serum factor (sphingosine-1-phosphate; S1P) that causes desensitization of GC-B at concentrations well within the range of those found in serum

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call