Abstract

The long-term use of isoproturon may threaten food security and human health. Cytochrome P450 (CYP or P450) can catalyze the biosynthetic metabolism, and play a crucial role in the modification of plant secondary metabolites. Therefore, it is of great importance to explore the genetic resources for isoproturon degradation. This research focused on a phase I metabolism gene (OsCYP1) with significant differential expression in rice under isoproturon pressure. Specifically, the high-throughput sequencing results of rice seedling transcriptome in response to isoproturon stress were analyzed. The molecular information and tobacco subcellular localization of OsCYP1 were studied. The subcellular localization of OsCYP1 in tobacco was assessed, where it is located in the endoplasmic reticulum. To analyze the expression of OsCYP1 in rice, the wild-type rice was treated with 0–1 mg/L isoproturon for 2 and 6 days, and qRT-PCR assays were conducted to detect the transcription levels. Compared with the control group, the expression of OsCYP1 in shoots was progressively upregulated after exposure to isoproturon, with 6.2–12.7-fold and 2.8–7.9-fold increases in transcription levels, respectively. Moreover, treatment with isoproturon upregulated the expression of OsCYP1 in roots, but the upregulation of transcripts was not significant except for 0.5 and 1 mg/L isoproturon at day 2. To confirm the role of OsCYP1 in enhancing isoproturon degradation, the vectors overexpressing OsCYP1 were transformed into recombinant yeast cells. After exposure to isoproturon, the growth of OsCYP1-transformed cells was better than the control cells, especially at higher stress levels. Furthermore, the dissipation rates of isoproturon were increased by 2.1-, 2.1- and 1.9-fold at 24, 48 and 72 h, respectively. These results further verified that OsCYP1 could enhance the degradation and detoxification of isoproturon. Collectively, our findings imply that OsCYP1 plays vital role in isoproturon degradation. This study provides a fundamental basis for the detoxification and regulatory mechanisms of OsCYP1 in crops via enhancing the degradation and/or metabolism of herbicide residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call