Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Although the cause of MS is still uncertain, many findings point toward an ongoing autoimmune response to myelin antigens. Because of its location on the outer surface of the myelin sheath and its pathogenicity in the experimental autoimmune encephalomyelitis model, myelin oligodendrocyte glycoprotein (MOG) is one of the potential disease-causing self antigens in MS. However, the role of MOG in the pathogenesis of MS has remained controversial. In this study we addressed the occurrence of autoantibodies to native MOG and its implication for demyelination and axonal loss in MS. We applied a high-sensitivity bioassay, which allowed detecting autoantibodies that bind to the extracellular part of native MOG. Antibodies, mostly IgG, were found in sera that bound with high affinity to strictly conformational epitopes of the extracellular domain of MOG. IgG but not IgM antibody titers to native MOG were significantly higher in MS patients compared with different control groups with the highest prevalence in primary progressive MS patients. Serum autoantibodies to native MOG induced death of MOG-expressing target cells in vitro. Serum from MS patients with high anti-MOG antibody titers stained white matter myelin in rat brain and enhanced demyelination and axonal damage when transferred to autoimmune encephalomyelitis animals. Overall these findings suggest a pathogenic antibody response to native MOG in a subgroup of MS patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.