Abstract

We propose an Eulerian approach to investigate the motion of particles in turbulence under the assumption that the motion of particles remains smooth in space and time until a collision between particles occurs. When the first collision happens, particle velocity loses C^1 continuity, resulting in a finite-time blowup. The corresponding singularities in particle velocity gradient, particle number density, and particle vorticity for various Stokes numbers and gravity factors are numerically investigated for the first time in a simple two-dimensional Taylor-Green vortex flow, two-dimensional decaying turbulence, and three-dimensional isotropic turbulence. In addition to the critical Stokes number above which a collision begins to occur, the flow condition leading to collision is revealed; particles tend to collide in very thin shear layer constructed by two parallel same-signed vortical structures when Stokes number is above the critical one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.