Abstract

Cartilage matrix protein (CMP) is synthesized by chondrocytes in a developmentally regulated manner. Here we have dissected promoter upstream elements involved in its transcriptional regulation. We show that although the 79-base pair CMP minimal promoter is promiscuous, 1137 base pairs of 5'-flanking region are capable of directing tissue- and developmental stage-specific transcription when fused to a reporter gene. This results from two positive control regions which, in proliferating chondrocytes, relieve the repression mediated by two non-tissue-specific negative control regions. Characterization of the promoter proximal silencer by DNase I footprinting and gel shifts revealed the presence of two elements, SI and SII, which bound mesenchymal cell proteins. Methylation interference analysis indicated a gapped palindromic binding site similar to nuclear factor I (NF-I) family proteins within SI, but only a half-site within SII. Gel shift assays with specific NF-I and mutated SI competitors, binding of recombinant NF-I, as well as supershift analysis with NF-I-specific antiserum verified the binding of NF-I family proteins to the SI element. Double-stranded SI and SII oligonucleotides inserted in single copy in either orientation were found to repress both homologous and heterologous promoters upon transfection into mesenchymal cells. Transcriptional repression also occurred when a consensus NF-I site itself was fused to the CMP minimal promoter. We conclude that NF-I-related protein(s) can mediate transcriptional repression in cells of mesenchymal origin.

Highlights

  • We provide evidence that both elements bind to NF-l-Iike proteins and that these, as well as a consensus nuclear factor I (NF-I) site, can repress the Cartilage matrix protein (CMP) minimal promoter

  • From the Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P

  • We show that the 79-base pair Cartilage matrix protein (CMP) minimal promoter is promiscuous, 1137 base pairs of 5' -flanking region are capable of directing tissue- and developmental stage-specific transcription when fused to a reporter gene

Read more

Summary

Introduction

We provide evidence that both elements bind to NF-l-Iike proteins and that these, as well as a consensus NF-I site, can repress the CMP minimal promoter.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.