Abstract

Human and experimental heart failure is characterized by increases in type-1 protein phosphatase activity, which may be partially attributed to inactivation of its endogenous regulator, protein phosphatase inhibitor-1. Inhibitor-1 represents a nodal integrator of two major second messenger pathways, adenosine 3',5'-cyclic monophosphate (cAMP) and calcium, which mediate its phosphorylation at threonine 35 and serine 67, respectively. Here, using recombinant inhibitor-1 wild-type and mutated proteins, we identified a novel phosphorylation site in inhibitor-1, threonine 75. This phosphoamino acid was phosphorylated in vitro by protein kinase Calpha independently and to the same extent as serine 67, the previous protein kinase Calpha-identified site. Generation of specific antibodies for the phosphorylated and dephosphorylated threonine 75 revealed that this site is phosphorylated in rat and dog hearts. Adenoviral-mediated expression of the constitutively phosphorylated threonine 75 inhibitor-1 in isolated myocytes was associated with specific stimulation of type-1 protein phosphatase activity and marked inhibition of the sarcoplasmic calcium pump affinity for calcium, resulting in depressed contractility. Thus, phosphorylation of inhibitor-1 at threonine 75 represents a new mechanism of cardiac contractility regulation, partially through the alteration of sarcoplasmic reticulum calcium transport activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.