Abstract

BackgroundParkinson’s disease (PD) is complex and heterogeneous. The numerous susceptibility loci that have been identified reaffirm the complexity of PD but do not fully explain it; e.g., it is not known if any given PD susceptibility gene is associated with all PD or a disease subtype. We also suspect that important disease genes may have escaped detection because of this heterogeneity. We used presence/absence of family history to subdivide the cases and performed genome-wide association studies (GWAS) in Sporadic-PD and Familial-PD separately. The aim was to uncover new genes and gain insight into the genetic architecture of PD.ResultsEmploying GWAS on the NeuroGenetics Research Consortium (NGRC) dataset stratified by family history (1565 Sporadic-PD, 435 Familial-PD, 1986 controls), we identified a novel locus on chromosome 1p21 in Sporadic-PD (PNGRC = 4×10-8) and replicated the finding (PReplication = 6×10-3; PPooled = 4×10-10) in 1528 Sporadic-PD and 796 controls from the National Institutes of Neurologic Disease and Stroke (NINDS) Repository. This is the fifth PD locus to be mapped to the short arm of chromosome 1. It is flanked by S1PR1 and OLFM3 genes, and is 200 kb from a multiple sclerosis susceptibility gene. The second aim of the study was to extend the stratified GWAS to the well-established PD genes. SNCA_ rs356220 was associated with both Sporadic-PD (OR = 1.37, P = 1×10-9) and Familial-PD (OR = 1.40, P = 2×10-5). HLA_rs3129882 was more strongly associated with Sporadic-PD (OR = 1.38, P = 5×10-10) than Familial-PD (OR = 1.12, P = 0.15). In the MAPT region, virtually every single nucleotide polymorphism (SNP) had a stronger effect-size and lower P-value in Familial-PD (peak P = 8×10-7) than in Sporadic-PD (peak P = 2×10-5).ConclusionsWe discovered and replicated a new locus for Sporadic-PD which had escaped detection in un-stratified GWAS. This demonstrates that by stratifying on a key variable the power gained due to diminished heterogeneity can sometimes outweigh the power lost to reduced sample size. We also detected distinct patterns of disease associations for previously established PD susceptibility genes, which gives an insight to the genetic architecture of the disease and could aid in the selection of appropriate study population for future studies.

Highlights

  • Parkinson’s disease (PD) is complex and heterogeneous

  • Known loci When genome-wide association studies (GWAS) data were analyzed without stratification (All-PD with 2000 cases, 1986 controls), we recovered SNCA as the strongest signal; HLA, which reached genome-wide significance; and MAPT, which had a clear peak but fell below the significance threshold (Figure 1A, Table 1)

  • It is well established that polymorphisms in SNCA, MAPT, and HLA are associated with PD; it is not known if their effects are ubiquitous across all PD or stronger in Sporadic or Familial subtype

Read more

Summary

Introduction

Parkinson’s disease (PD) is complex and heterogeneous. The numerous susceptibility loci that have been identified reaffirm the complexity of PD but do not fully explain it; e.g., it is not known if any given PD susceptibility gene is associated with all PD or a disease subtype. We suspect that important disease genes may have escaped detection because of this heterogeneity. Despite the great strides made recently, we still do not have a clear picture of the genetic architecture of PD, partly because not all the genes have been identified, and partly because we do not know if a given gene is associated with all or a subtype of PD. The genetic distinction between idiopathic Familial-PD and Sporadic-PD, if any exists, is unknown

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call