Abstract

In the Gram-negative bacterium Aeromonas hydrophila, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) influences pathogenicity, protein secretion, and motility. However, the catalytic mechanism of AHL biosynthesis and the structural basis and substrate specificity for AhyI members remain unclear. In this study, we cloned the ahyI gene from the isolate A. hydrophila HX-3, and the overexpressed AhyI protein was confirmed to produce six types of AHLs by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, contrasting with previous reports that AhyI only produces N-butanoyl-l-homoserine lactone (C4-HSL) and N-hexanoyl-l-homoserine lactone (C6-HSL). The results of an in vitro biosynthetic assay showed that purified AhyI can catalyze the formation of C4-HSL using S-adenosyl-l-methionine (SAM) and butyryl-acyl carrier protein (ACP) as substrates and indicated that the fatty acyl substrate used in AhyI-mediated AHL synthesis is derived from acyl-ACP rather than acyl-CoA. The kinetic data of AhyI using butyryl-ACP as an acyl substrate indicated that the catalytic efficiency of the A. hydrophila HX-3 AhyI enzyme is within an order of magnitude compared to other LuxI homologues. In this study, for the first time, the tertiary structural modeling results of AhyI and those of molecular docking and structural and functional analyses showed the importance of several crucial residues, as well as the secondary structure with respect to acylation. A Phe125-Phe152 clamp grasps the terminal methyl group to assist in stabilizing the long acyl chains in a putative binding pocket. The stacking interactions within a strong hydrophobic environment, a hydrogen-bonding network, and a β bulge presumably stabilize the ACP acyl chain for the attack of the SAM α-amine toward the thioester carbon, offering a relatively reasonable explanation for how AhyI can synthesize AHLs with diverse acyl-chain lengths. Moreover, Trp34 participates in forming the binding pocket for C4-ACP and becomes ordered upon SAM binding, providing a good basis for catalysis. The novel finding that AhyI can produce both short- and long-chain AHLs enhances current knowledge regarding the variety of AHLs produced by this enzyme. These structural data are expected to serve as a molecular rationale for AHL synthesis by AhyI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.