Abstract

The assembly of the vessel wall from its cellular and extracellular matrix components is an essential event in embryogenesis. Recently, we used the descending aorta of the embryonic quail to define the morphological events that initiate the formation of a multilayered vessel wall from a nascent endothelial cell tube (Hungerford, J.E., G.K. Owens, W.S. Argraves, and C.D. Little. 1996. Dev. Biol. 178:375-392). We generated an mAb, 1E12, that specifically labels smooth muscle cells from the early stages of development to adulthood. The goal of our present study was to characterize further the 1E12 antigen using both cytological and biochemical methods. The 1E12 antigen colocalizes with the actin cytoskeleton in smooth muscle cells grown on planar substrates in vitro; in contrast, embryonic vascular smooth muscle cells in situ contain 1E12 antigen that is distributed in threadlike filaments and in cytoplasmic rosette-like patterns. Initial biochemical analysis shows that the 1E12 mAb recognizes a protein, Mr = 100,000, in lysates of adult avian gizzard. An additional polypeptide band, Mr = 40,000, is also recognized in preparations of lysate, when stronger extraction conditions are used. We have identified the 100-kD polypeptide as smooth muscle alpha-actinin by tandem mass spectroscopy analysis. The 1E12 antibody is an IgM isotype. To prepare a more convenient 1E12 immunoreagent, we constructed a single chain antibody (sFv) using recombinant protein technology. The sFv recognizes a single 100-kD protein in gizzard lysates. Additionally, the recombinant antibody recognizes purified smooth muscle alpha-actinin. Our results suggest that the 1E12 antigen is a member of the alpha-actinin family of cytoskeletal proteins; furthermore, the onset of its expression defines a primordial cell restricted to the smooth muscle lineage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.