Abstract

The incidence of hepatoma is high in the Chinese population. Searching for genes involved in the functions of the liver, especially genes specifically expressed in the liver, will facilitate an insight into the molecular basis of normal and abnormal liver functions. Based on a differentially displayed cDNA fragment, which was down regulated in hepatoma tissues, we cloned a novel cDNA of 957 bp, TCP10L (T-complex protein 10 like), from the human liver cDNA library. Northern hybridization of this novel gene in 30 adult human tissues was examined. The result revealed that TCP10L expressed specifically in the human liver and testis. The TCP10L contains a 645-bp open reading frame encoding a deduced protein of 215 amino acids. As the deduced protein was analyzed further, a typical leucine zipper motif was found. We firstly examined the transcriptional function of the TCP10L protein by transfecting recombinant pM-TCP10L into mammalian cells. The subsequent analysis based on the dual luciferase assay system showed that TCP10L significantly inhibited the expression of reporter genes. Compared with that of the negative control, the luciferase activity were down regulated in HEK293 and SK-HEP-1, CHO cells by about 2.6, 9.8, and 5.5 folds respectively. A mutated type of TCP10L was also constructed. It showed that the repression of TCP10L to the expression of the reporter gene almost completely decreased, suggesting that the leucine zipper structure is critical for TCP10L to play its role in regulation function. Then we transfected the recombinant TCP10L-EGFP into cells. The results indicated that TCP10L subcellularly located in nuclei, either in HEK 293 or SK-HEP-1 cells. In addition, human TCP10L was found comprised of five exons and four introns, and mapped to chromosome 21q22.11.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.