Abstract

The author sought to develop a high-throughput activity screening assay to carry out rapid kinetic analysis, inhibitor screening, and directed evolution of cytochrome P450 2C enzymes. Initially, of the 9 fluorescent substrates and 10 P450 2C enzymes tested, several P450 2C enzymes showed > 1 nmol/min/nmol P450 activity in cumene hydroperoxide (CuOOH)-supported reaction with a laser dye, 7-dimethylamino-4-trifluoromethylcoumarin (C152). A high-throughput steady-state kinetic analysis of the human P450 2C8, 2C9, and 2C19 showed 1) k(cat) = 3 to 6 min(-1), 2) K(m, CuOOH) = 100 to 200 microM, and 3) S(50, C152) = 10 to 20 microM in the CuOOH system. In addition, P450 2C9 and 2C19 showed a very high k(ca)t (27 and 38 min(-1), respectively) in the nicotinamide adenine dinucleotide phosphate (NADPH)-supported reaction. Subsequently, when mammalian P450s from the other subfamilies were tested, P450 2B1dH, 2B4dH, 2B5dH, 3A4, and 3A5 exhibited a significant activity in both CuOOH and NADPH systems. Furthermore, a high-throughput activity screening assay using whole-cell suspensions of the human P450 2C8, 2C9, and 2C19 was optimized. Overall, the data suggested that C152 can be used as a model substrate for mammalian P450s in CuOOH-supported reaction to perform rapid kinetic analysis, inhibitor screening, and directed evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.